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J. Phys. A: Math. Gen. 15 (1982) U63-U65. Printed in Great Britain 

LETI’ER TO THE EDITOR 

Laplace transforms of Airy functions 

S G Davisont and M L Glassed 
Quantum Theory Group, Applied Mathematics Department, University of Waterloo, 
Ontario N2L 3G1, Canada 

Received 25 May 1982 

Abstract. Analytic expressions, involving gamma, incomplete gamma and degenerate 
hypergeometric functions, are obtained for the Laplace transforms of Airy functions, 
Which arise in the theory of electron tunnelling from solids. 

When an electron is subjected to an electric field, it experiences a linear potential. 
For such a potential, the Schrodinger equation becomes the Airy equation, whose 
solutions are well known (Lebedev 1965). In field-emission experiments (Gadzuk 
and Plummer 1973), an electric field is applied to a crystal surface, and the linear 
potential barrier so formed allows electrons to tunnel out from the bulk and surface 
states of the crystal. This process may be analysed by means of the sudden approxima- 
tion of time-dependent perturbation theory (Schiff 1968), and the tunnelling current 
obtained. 

In performing these calculations, the need arises to evaluate integrals of the form 

(1) 
m 

I&) = lo e-” Fi(-z) dz 

where 

Fi(-z) = Ai(-z), Bi(-z) (2) 

satisfies the Airy equation 

Fi”(-z) + z Fi(-z) = 0. (3) 

The purpose of this letter is to solve the integrals in (l), which are the Laplace 
transforms of the respective Airy functions, by using (3). 

Integrating (1) successively by parts leads to 
03 

I&) =p-’  Fi(0)+p-2 Fi’(O)+p-’ 1 e-” Fi”(-z) dz 
0 

which by (3) becomes 
CO 

I&) =p-’ Fi(0)+p-2 Fi’(0) -p-2 I z e-” Fi(-z) dz 
0 
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i.e. 

-1; ( p )  + p 2 1 p ( p )  = p Fi(0) + Fi'(0) 

or 

d 
-  IF(^) exp(-p3/3)] = exp(-p3/3)[p Fi(0) +Fi'(O)]. 
dP 

 IF^) = ~ X P ( P ~ / ~ ) ( I F ( O ) - [ ~  0 exp(-p3/3)Cp Fi(O)+Fi'(O)l dp) 

Integrating between 0 and p gives 

which, on setting t = p3/3, yields 

I&) = exp(p'/3)( I p ( 0 )  - 3-'13 Fi(0) I P3/3 
e-ft-1'3 dt - 3-2/3 Fi'(0) [3'3 dt) . 

0 

(4) 

However, 
a b  

J e-'t"-' dt = y(a, b )  
0 

y being the incomplete gamma function (Abramowitz and Stegun 1964). Thus, ( 5 )  
in (4) gives 

(6)  I&) = exp(p3/3)[Ip(0) - 3-'13 Fi(O)y($, p3/3) - 3-2/3 Fi'(O)y($, p3/3)]. 

In view of (2), equation (6) leads to (Abramowitz and Stegun 1964) 

= 3-' exp(p3/3)[2 - Y (3, p3/3)/r(5) + rtf, p3/3)/r(5)i (7) 

(8) 

and 

M P )  = 3-'/2 exp(p3/3)[r (3, p3/3)/r($) + 14, p3/3)/r(f)i 
via 

W co 

IA(O) = Ai(*z) dz = $, 5, I ~ ( o )  = Jo Bi(-z) dz = 0, (9) 

and 

Ai(0) = 3-1/2 Bi(0) = [32/3r($)]-', -Ai'(O) = 3-'12 Bi'(0) = [31/3r($)]-'. (10) 
Laplace transforms of the type 

m 

@ A ( p )  = I, e-" Ai(z) dz 

where Ai(z) now satisfies 

Ai"(z) - z Ai(r) = 0 

may also be treated by the above procedure. In this case, (4) is replaced by (Gradshteyn 
and Ryzhik 1965) 

(13) cPA(b) = e-b[cPA(0) + 3-'/3 Ai(O)q5($, 6) + 3-2/3 Ai'(O)q5($, b)] 
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where 

b =p3/3 (14) 

and 

'F1 being the degenerate hypergeometric function. Hence, with the aid of (9) and 
(lo), substituting (16) in (13) yields 

(17) cpA(b) = e-b[$+b2/31~1($, $; ~ ~ ) / 2 r ( $ ) - b ' / ~ ~ ~ ~ ( $ ,  4; b)/r($)]. 
Finally, it is interesting to note that, in the integrand of US), 

m 

Ca = [r(a)]-' lo ua-l e-'" du 

from the integral definition of the gamma function. Inserting (18) in (15), and reversing 
the order of integration, gives (Gradshteyn and Ryzhik 1965) 

m b  

4(a ,  6) =[r(a)]-' J 1 ua-1 e"'-"' dr du = [r(a)]-'[M(a)-ebL(a, b ) ]  (19) 
0 0  

where 
m 

M ( a )  = lo ua-'(u - 1)-' du = -T cot(wa) 

and 
CO 

L(a, b )  = e-buua-l(u - 1)-' du. 
0 

Thus, equating (16) and (19) enables the evaluation 

L(a, 6 )  =e-b[M(a)-61-a(1-a)-'~(a)lF~(1-a, 2 - U ;  6 ) ]  (22) 
to be achieved, which augments the solution (Gradshteyn and Ryzhik 1965) 

lom e-bu U a-1 (U +U)-' du = aa-l eabr(a)r( l  -a,  a b )  

that requires larg a! I < T, Re b > 0 and Re a > 0. 

Note added in proof. After completing this article, the authors became aware of other work on this problem 
(Smith 1973). 
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